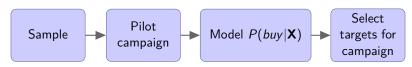
ECML/PKDD'22 Uplift Modeling Tutorial & Workshop

Szymon Jaroszewicz^{1,2} & Wouter Verbeke³

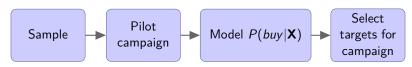
 $^1 \mbox{Institute}$ of Computer Science, Polish Academy of Sciences $^2 \mbox{Faculty}$ of Mathematics and Information Science, Warsaw University of Technology $^3 \mbox{KU}$ Leuven

September 18, 2022



Tutorial overview

- Introduction to uplift modeling (SJ)
 - how it differs from other approaches
- Uplift modeling methods 1 (SJ)
 - decision trees
 - ensemble methods
 - linear models
- Uplift modeling methods 2 (VW)
 - meta-learners
 - deep learning
 - learning2rank
- Evaluation of uplift models (WV)
- Implementing uplift models: software packages (SJ)
- Open issues (WV)


What is uplift modeling?

Old style marketing marketing campaign

What is uplift modeling?

Old style marketing marketing campaign

- But this is not what we need!
- We want people who bought because of the campaign
- Not people who bought after the campaign

Four groups of customers

We can divide potential customers into four groups

- Responded because of the action (the people we want)
- Responded, but would have responded anyway (unnecessary costs)
- Did not respond and the action had no impact (unnecessary costs)
- Did not respond because the action had a (negative impact)

Four groups of customers

		Buy after campaign		
		No	Yes	
Buy without campaign	No	Lost causes	Persuadables	
	Yes	Sleeping dogs	Sure things	

Solution: Uplift modeling

- Solution: Uplift modeling
- Two training sets:
 - the treatment group on which the action was taken
 - 2 the control group on which no action was taken used as background
- Build a model which predicts the difference between class probabilities in the treatment and control groups
- Random assignment to treatment/control groups allows for causal interpretation.
- Similar to a randomized clinical trials in medicine

Difference with traditional classification

Old style models predict the conditional probability

$$P(Y \mid x, Treatment)$$

Uplift models predict change in behaviour resulting from the action

$$P(Y \mid x, Treatment) - P(Y \mid x, Control)$$

Uplift modeling within causal discovery

- Uplift modeling is part of a broad field of causal discovery
 - most areas have different focus (e.g. causal graph discovery)
- Individual Treatment Effect (ITE) estimation has similar goals
 - estimate effect of an action at the level of individuals

$$\mathit{CATE}(x) = \mathrm{E}(Y \mid x, \mathsf{Treatment}) - \mathrm{E}(Y \mid x, \mathsf{Control})$$

- Uplift modeling and ITE estimation developed in parallel
 - several ideas rediscovered several times
- Different origins
 - uplift modeling has origins in marketing and ML
 - ITE estimation has origins in social/medical sciences and statistical community
- Result: different focus

Problem setting				
Uplift modeling	ITE estimation			
Primarily randomized experiments • easier to obtain in marketing (e.g. A/B testing)	 Biased treatment assignment e.g. doctor assigned therapy RTs expensive/unethical in medical/social domain 			
Well designed experiment ⇒ causal models	Nontrivial assumptions needed, e.g. no unmeasured confounders			

Goals & methodology				
Uplift modeling	ITE estimation			
Obtain the best possible esti-	Unbiased CATE estimation			
mator of treatment effect	while correcting treatment			
	assignment bias			
Focus on prediction:	Sophisticated statistical meth-			
Machine Learning models pre-	ods for bias correction			
dicting the effect directly	 doubly robust methods 			
	joint CATE and			
	propensity score			
	estimation			

Evaluation			
Uplift modeling	ITE estimation		
Ranking based methodsCurves	PEHE (MSE of estimated effect)		