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Introduction

Most uplift modeling methods assume i.i.d. data.
In most practical settings this assumption is violated:

I Data changes in space (e.g., different cities, different labs).
I Data changes in time (e.g., same space at different points in time).

These changes might induce non-robust uplift models: models that fail to
generalize under changing data conditions.
Active research area in out-of-distribution (OOD) generalization for
supervised learning, but not much attention in uplift modeling literature.
Goal of this talk is to provide an overview of the problem, and sketch a
proposed approach (in progress).
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Motivating Example

Õ Healthcare: Uplift model developed based on a randomized controlled trial
composed of lung cancer patients from different medical clinics/locations in
Hospital 1 identifies for which patients a treatment is more effective.
Can this model be safely used to predict treatment effectiveness on
patients in Hospital 2? (patients coming from a different set of
clinics/locations)

� Program Evaluation: Uplift model developed based on experimental data
from schools in California identifies for which students a new educational program
is more effective (improvement in grades).

Can this model be reliably used in other US states?

M Marketing: A company develops an uplift model to estimate which customers
will most likely respond to a price incentive based on experimental data.

Can we rely on this model to predict price-elasticities on a population of
clients whose characteristics differ from the study distribution?
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Conditional Average Treatment Effect (CATE)

We refer to Uplift models as CATE models.
Let T be a binary variable representing treatment, Y ∈ R be the observed
outcome, and X ∈ Rp a vector of covariates.
Using the Neyman/Rubin Potential Outcome notation, the CATE τ(x) is
defined as the following estimand:

τ(x) , E[Yi (1)− Yi (0)|X = x ].

Alternatively, using Pearl’s do-operator, we can equivalently define the CATE
as

τ(x) , E[Yi |do(T = 1),X = x ]− E[Yi |do(T = 0),X = x ].

We will occasionally work with the full distribution rather than just the
means:

P(y |do(t), x).
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The Setting

Let Ψ := 〈G ,P(Y ,X ,T )〉 be probabilistic causal model (PCM), where G is a
causal graph, and P(Y ,X ,T ) a joint distribution over the variables in G .

Assume P(Y ,X ,T ) satisfies the causal Markov assumption

P(Y ,X ,T ) = P(Y |PAY )P(T |PAT )

p∏
j=1

P(Xj |PAXj ),

where P(V |PAV ) represents the causal mechanism for variable V , and we
assume it remains invariant to interventions in variables other than V (a.k.a.
modularity assumption).
Let Πtot be a collection of ‘environments’ (e.g., different cities, labs,
perturbations, etc.) such that for each environment

π ∈ Πtot, (Y π,Xπ,Tπ) ∼ Pπ.

The causal mechanisms P(Xj |PAXj ) and P(T |PAT ) are allowed to change
between environments, but assume no changes in P(Y |PAY ) or the graph G .
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The Problem

At training time, we observe nk samples

(Y πk
i ,Xπk

i ,Tπk
i )nki=1 ∼ Pπk

(
Y πk ,Xπk |do(T := Bernoulli(0.5)

)
,

from a subset {πk=1, . . . , πK} = Πobs ⊆ Πtot of the environments, where
Pπk

(
Y πk ,Xπk |do(T := Bernoulli(0.5)

)
represents an interventional distribution

obtained by randomizing T .

At test time, we want to predict the CATE τ(x) from a potentially unseen
environment π∗ ∈ Πtot \ Πobs, from samples drawn from ∼ Pπ∗(Y π∗ ,Xπ∗ ,Tπ∗).

The goal is to build a CATE estimator τ̂(x) that minimizes the expected loss

E(Yπ∗ ,Xπ∗ ,Tπ∗ )∼Pπ∗ `(τ̂(x), τ),

based on experimental data from the source environments Πobs.
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Illustration

We let δk , k = {1, . . . ,K}, be a set of K auxiliary variables which turn G into an
augmented graph Gδ.

An edge δk → X denotes a change in the causal mechanism that generates X .

In this example, the causal mechanism for Loss of Strength changes between
environments:

Pπi (Loss of strength|Cancer) 6= Pπj (Loss of strength|Cancer) ∀i 6= j ∈ K .
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Illustration (cont’d)

Suppose the augmented Causal Graphs Gδ above are induced by the following
Structural Causal Model (SCM):

A :=NA

S :=NS

Y :=A + S + T + 1.5× A× T + 0.5× S × T + NY

L :=δ × Y + NL

C :=0.3× Y + NC

δk , k = {1, . . . ,K} ∼ U(0, 1)

δ∗ ∼ U(−1, 1)

T ∼ Bernoulli(0.5)

Nj ∼ N (0, 1)
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Illustration (cont’d)

In-Distribution (Πobs) Out-of-Distribution (π∗ ∈ Πtot \ Πobs)

Inclusion of Cough (C ) is beneficial for generalization performance.
Inclusion of Loss of Strength (L) is harmful for OOD generalization
performance.
Our proposed approach selects Smoke (S) and Cough (C ) as input features
in CATE estimation (Model 2).
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Key Challenges for Building Robust CATE Estimators

Recall the goal is to build a CATE estimator τ̂(x) that minimizes the
expected loss

E(Yπ∗ ,Xπ∗ ,Tπ∗ )∼Pπ∗ `(τ̂(x), τ), (1)

based on experimental data from the source environments Πobs.

We have two problems with 1:
1 No data from Pπ∗ are available at training time.
2 τi is not observed for an individual (due to the fundamental problem of causal

inference).
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Invariant CATE Features

Definition (Invariance)
A set of features X I, I ⊆ {1, . . . , p}, for estimating the CATE P(y |do(t), x) from
Πobs is invariant if for all πi , πj ∈ Πobs and for all x ∈ X

Pπi (y |do(t), x I) = Pπj (y |do(t), x I).

Invariant sets are not unique. We let Ω be the collection of invariant CATE
feature sets.
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Proposed CATE Estimator

Assumptions

A1. There exists an invariant set of CATE features X I (i.e., satisfying the
invariance property defined above).

A2. The invariance property also hold for unseen environments π∗ ∈ Πtot \ Πobs.

A3. The conditional distribution P(y |do(t), x) is linear (this addresses potential
issues with non-overlapping feature supports).

We propose linear CATE estimators τ̂(x I∗; θ) = θ′x I∗, using an invariant set of
features X I∗ ∈ Ω, identified from Πobs.

Specifically, our proposed estimator with squared-error loss is given by

θ∗(x I∗) = arg min
θ

1∣∣V∣∣ ∑
i∈|V|

(
τ̂i (x

I; θ)− τ̌i
)2
∀ x I ∈ Ω,

where τ̌i is a plug-in estimate of τi estimated using data from a validation set V
(Shuler et al., 2018). This attempts to circumvent the issue of unobserved τ .
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Robustness

Theorem (Adversariala)
aAdapted from Rojas-Carulla et al. (2018).

Consider (Y π1 ,Xπ1 ,Tπ1) ∼ Pπ1 , . . . , (Y πK ,XπK ,TπK ) ∼ PπK and an invariant set of
CATE features I∗ satisfying A1-A3. The proposed estimator satisfies the following
optimality statement over a set of distributions:

θ∗(I∗) ∈ arg min
θ

sup
Pπ∗∈P

E(Yπ∗ ,Xπ∗ ,Tπ∗ )∼Pπ∗ `
(
τ̂(x ; θ), τ̌

)
.

Here P represents a family of distributions composed of all interventions on any subset
of variables excluding Y .

Leo Guelman (RBC Royal Bank) OOD Generalization of Uplift Models September 2022 13 / 17



Learning Invariant CATE Features

Algorithm 1 Invariant CATE Features
Inputs: Samples (y

πk
i , x

πk
i , t

πk
i )

nk
i=1 from each environment πk , k ∈ {1, . . . ,K}, and threshold αc for

independent test.
Output: Estimated invariant CATE feature set X I∗.
1: Set MSE=[ ], I = [ ].
2: Create pseudo-outcome W = 2YT with T = ±1. (See Tian et al., 2014).
3: for I ⊆ {1, . . . , p} do
4: Linearly regress W on X I and compute the residuals Rk

θ = W k − θ′X k , k ∈ {1, . . . ,K} on a
validation set V.

5: Test for equality in distributions of residuals across environments

H0 = R1
θ

d
= R2

θ
d
= . . .

d
= RK

θ ,

and the corresponding p-value α.
6: if α > αc then
7: Compute ˆ̀

θ = 1∣∣V∣∣ ∑i∈|V|
(
τ̂(xI; θ)− τ̌

)2.
8: I.append(X I), MSE.append(ˆ̀

θ).
9: end if

10: end for
11: Set X I∗ = I[arg min [MSE]].
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Numerical Experiments

X1,X3 ∼N(0, 1)

Y :=α1X1 + α2X3 + α3T + α4X1 × T+

α5X3 × T + NY

X2 :=δkY + NX2

NY ∼N(0, 1.5)

δk , δ∗ ∼ U(0, 1), k = {1, . . . ,K}
NX2 ∼N(0, 0.1)

α1, . . . , α5 ∼U(−1, 2.5)
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Numerical Experiments: Results

Table: CATE MSE: Mean and (SE)

Pool Method

N K = 3 K = 6 K = 10 K = 15 K = 20

200 2.107 1.588 1.391 1.298 1.025
(0.419) (0.379) (0.378) (0.330) (0.245)

400 1.807 1.222 0.935 1.109 1.140
(0.345) (0.179) (0.120) (0.159) (0.196)

800 1.535 1.461 0.958 1.445 1.152
(0.203) (0.234) (0.133) (0.334) (0.331)

1200 1.385 1.438 1.222 1.047 0.924
(0.233) (0.414) (0.223) (0.158) (0.143)

Proposed Method

200 4.502 1.932 1.864 2.144 1.552
(2.078) (0.484) (0.473) (0.542) (0.473)

400 1.851 0.598 0.573 0.490 0.206
(0.712) (0.278) (0.194) (0.211) (0.116)

800 1.618 0.538 0.142 0.077 0.073
(0.536) (0.296) (0.094) (0.049) (0.051)

1200 0.113 0.059 0.258 0.102 0.003
(0.076) (0.042) (0.162) (0.070) (0.002)
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Takeaways

We relax the i.i.d. assumption from CATE estimation methods.
We propose a method to select CATE models that are robust under a family
of distributional changes in the data.
The proposed method shows positive results on a limited number of
simulation scenarios.
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