Prescriptive maintenance with causal machine learning

Toon Vanderschueren, Robert Boute, Tim Verdonck, Bart Baesens, Wouter Verbeke

Challenge 15% – 40% of total production costs (Dunn, 1987; Lofsten, 2000)

Goal Maintenance needs to minimize costs related to:

- Machine failures
- Maintenance interventions

Existing work assumes certain maintenance effect

Perfect maintenance

- Maintenance makes a machine as good as new
- Typical assumption in the literature, but not realistic!
- Imperfect maintenance
 - Deterministic effect
 - Stochastic effect
 - Machine-independent effect

→ Why not learn the effect from data? = Causal inference

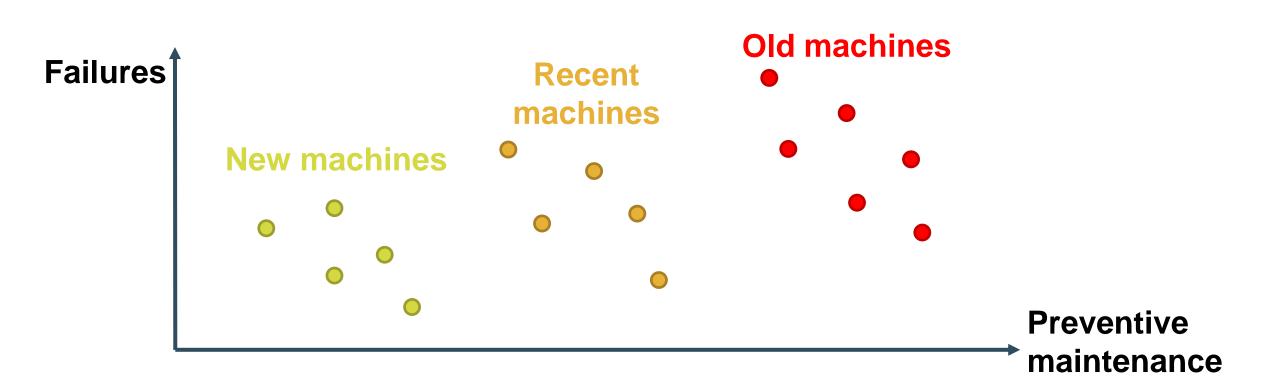
Learning maintenance effects from data

Randomized controlled trial, A/B testing

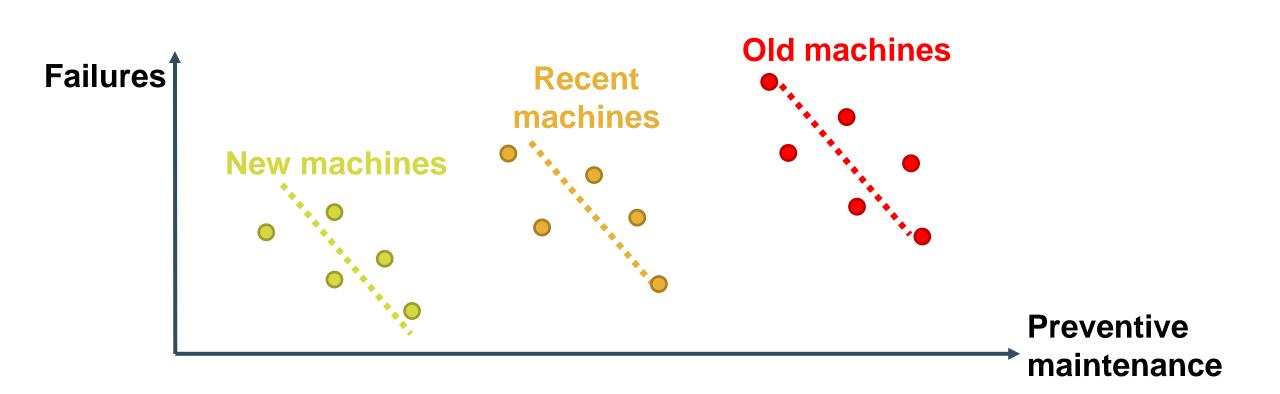
- "Gold standard" for estimating causal effects
- Expensive, infeasible, unethical

Observational data

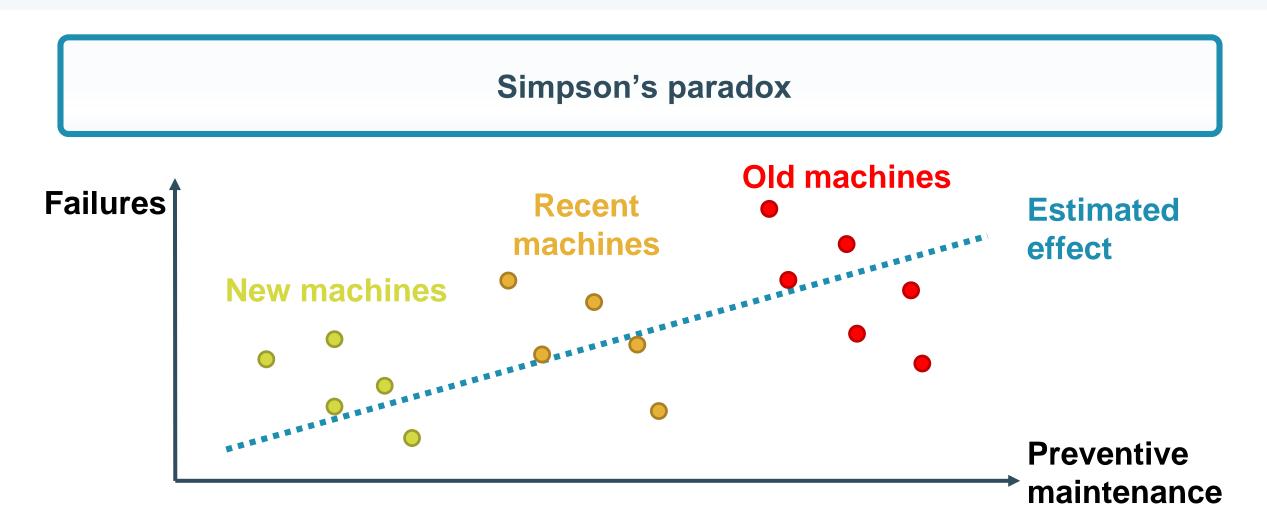
Learning maintenance effects from observational data



Learning maintenance effects from observational data



Learning maintenance effects from observational data



Problem formulation

Prior to contract start, decide on preventive maintenance frequency to minimize cost

Given contract x_i , find optimal t_i^* to minimize costs related to t_i^* , o_i and f_i

- Machine $x_i \in \mathbb{R}^d$
 - Machine type, age, industry, etc.
- Preventive maintenance frequency $t_i \in \mathbb{R}^+$
- Outcomes:
 - Overhauls $o_i \in \mathbb{R}^+$
 - Failures $f_i \in \mathbb{R}^+$

- 1. Predict overhauls $o_i(t_i)$ and failures $f_i(t_i)$ using observational data
- 2. Decide on optimal PM frequency t_i^* to minimize expected total cost:

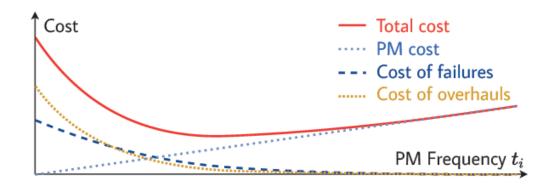
 $c(t_i) = c_t t_i + c_o o_i(t_i) + c_f f_i(t_i)$



1. Machine information \mathbf{x}_i

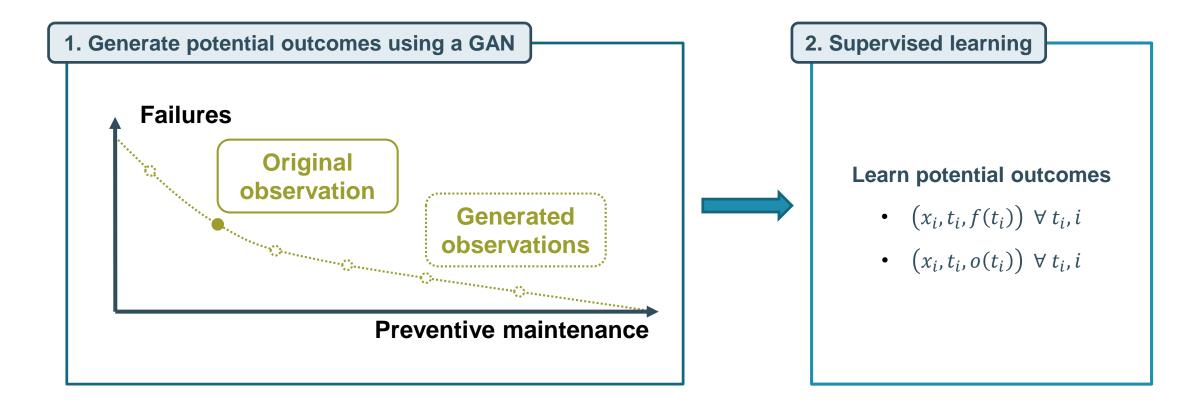
Potential
outcomes----
Failures $f_i(t_i)$
OverhaulsOverhauls $o_i(t_i)$

2. Predict potential outcomes $o_i(t_i)$ and $f_i(t_i)$



3. Prescribe the PM frequency t_i to minimize the total cost

1. Predict potential outcomes $o_i(t_i)$ and $f_i(t_i)$ with **SCIGAN** (Bica et al., 2020)



We propose a prescriptive, individualized maintenance approach SCIGAN-ITE:

- 1. Predict potential outcomes using SCIGAN: GAN \rightarrow MLP
- 2. Optimize individual preventive maintenance frequency t_i^*

We compare against two alternatives:

Methodology	Selection bias?	Individualized?
SCIGAN-ITE	\checkmark	\checkmark
MLP-ITE	X	\checkmark
SCIGAN-ATE	\checkmark	×

Results

Keeping PM as is in training set:

	MISE			PE	PCF
	Overhauls	Failures	SCIGAN-ITE	2.40 ± 0.46	1.07 ±
SCIGAN	7.71 ± 0.60	14.16 ± 1.68	MLP-ITE	4.36 ± 1.25	1.11 ± 0
MLP	10.25 ± 1.33	18.27 ± 3.65	SCIGAN-ATE	8.77 ± 1.07	$1.24 \pm$

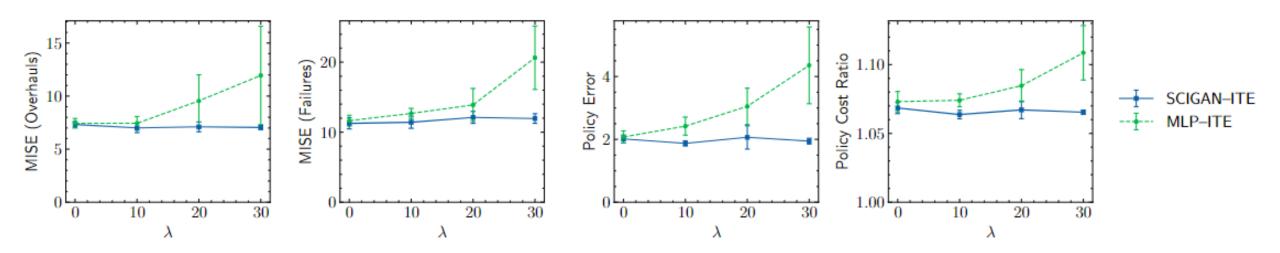
Results

Different levels of selection bias (λ **)**:



Results

Different levels of selection bias (λ **)**:



• Presented and validated a method for prescriptive maintenance

• Importance of dealing with selection bias

• Importance of prescribing maintenance on a case-by-case basis

toon.vanderschueren@kuleuven.be

