Metalearners for uplift modeling

ECML/PKDD'22 Uplift Modeling Tutorial Wouter Verbeke & Szymon Jaroszewicz

Metalearner

- Modeling strategy or framework to estimate the conditional average treatment effect (CATE) that can be implemented with any ML method
 - Base learner
 - Cfr. ensemble methods
- Different metalearners:
 - T-learner
 - S-learner
 - X-learner
 - R-learner
 - DR-learner
 - ...
- Appropriate learner? Depends on the data generating process!

T – learner

1. Estimate **two separate models** for the **two groups (C & T)** separately, to estimate the average outcomes $\mu_0(x)$ and $\mu_1(x)$:

 $\mu_0(x) = \mathbb{E}(Y(0)|X = x) \text{ using } \{X_i, Y_i\}_{T_i=0}$ $\mu_1(x) = \mathbb{E}(Y(1)|X = x) \text{ using } \{X_i, Y_i\}_{T_i=1}$

For binary treatment variable! For *any* type of outcome variable

- Two models can have different base learners as well as variables X_i
- 2. Obtain CATE estimate as follows:

$$\hat{\tau}(x) = \hat{\mu}_1(x) - \hat{\mu}_0(x)$$

- Appropriate when *response surfaces* are different
- UM literature: Two-model approach

T – learner

 $\hat{\tau}(x) = \beta_0^{T=1} + \beta_1^{T=1} X - \beta_0^{T=0} + \beta_1^{T=0} X$

1. Estimate the average outcomes $\mu(x, t)$ for both control and treatment groups with a **single** model:

$$\mu(x,t) = \mathbb{E}(Y|X = x, T = t)$$

2. Obtain CATE estimate by imputing T = 1 and T = 0:

$$\hat{\tau}(x) = \hat{\mu}(x, 1) - \hat{\mu}(x, 0)$$

For *any* type of treatment variable For *any* type of outcome variable (continuous, multiple, time-dep., ...) BUT: effect → baseline!

- Appropriate when response surfaces are *similar*
- **Propensity scoring** can be applied to reduce treatment assignment bias
- UM literature: treatment dummy approach

S – learner

- Limited flexibility?
- Add interaction terms to extend model flexibility (ATE > CATE)

1. Estimate the **average outcomes** $\mu_0(x)$ and $\mu_1(x)$ using machine learning models:

 $\mu_0(x) = \mathbb{E}(Y(0)|X = x)$ $\mu_1(x) = \mathbb{E}(Y(1)|X = x)$

2. Impute the treatment effects based on the observed and estimated outcome:

Control group
$$D_i^0 \coloneqq \hat{\mu}_1(X_i^1) - Y_i^0$$
 \rightarrow $\tau_0(x) = E[D^0|X = x]$ Treatment group $D_i^1 \coloneqq Y_i^1 - \hat{\mu}_0(X_i^0)$ \rightarrow $\tau_1(x) = E[D^1|X = x]$

then estimate $\tau_0(x) = E[D^0|X = x]$ and $\tau_1(x) = E[D^1|X = x]$ with machine learning models

3. Obtain CATE estimate as weighted average of both estimates:

$$\hat{\tau}(x) = g(x) \hat{\tau}_0(x) + (1 - g(x))\hat{\tau}_1(x)$$

• with $g(x) \in [0,1]$, e.g., a **propensity score** to reduce treatment assignment bias

 \rightarrow Appropriate when C & T samples are imbalanced

Transformed outcome method

Depending on the two potential outcomes

Depending on the **applied treatment** and the **observed outcome**

Transformed outcome method

transformed outcome

• Estimate the **transformed outcome** y' using machine learning models

References

- Künzel, S. R., Sekhon, J. S., Bickel, P. J., & Yu, B. (2019). Metalearners for estimating heterogeneous treatment effects using machine learning. *Proceedings of the national academy of sciences*, *116*(10), 4156-4165.
- Curth, A., & van der Schaar, M. (2021, March). Nonparametric estimation of heterogeneous treatment effects: From theory to learning algorithms. In *International Conference on Artificial Intelligence and Statistics* (pp. 1810-1818). PMLR.
- Causal ML package documentation: https://causalml.readthedocs.io/

Deep learning for uplift modeling

ECML/PKDD'22 Uplift Modeling Tutorial Wouter Verbeke & Szymon Jaroszewicz

Deep learning

- MLP as base learner in metalearner
 - E.g., S-Learner (treatment dummy)

INPUT LAYER HIDDEN LAYER 1 HIDDEN LAYER 2 OUTPUT LAYER

Deep learning

- MLP-specific approach: Y-net
 - Multi-task learning
 - Hybrid two-model architecture
 - For binary treatment
 - Observations of the treatment group for learning (partial updates) W_1 and W_{2T} and W_{3T}
 - Observations of the control group for learning (partial updates) W_1 and W_{2C} and W_{3C}

Balancing

How to learn from **observational data**?

- ➔ Treatment assignment bias
- → Learn *similar* representations of treatment and control group
 - Minimize distributional distance between both groups
 - Integral probability metrics as regularization
 - E.g., Wasserstein distance, maximum mean discrepancy, ...

x: original data h(x): representation

Deep learning with balancing

Learn a bias-free representation of X

• **How**?

- Measure amount of bias in Hidden layer H1, e.g., using MMD
- Extended loss function, e.g.: Binary crossentropy loss + MMD

$$Loss = \mathcal{L}_{BCE} + \alpha \mathcal{L}_{MMD}$$

 α : hyperparameter \mathcal{L}_{BCE} : Binary cross-entropy loss \mathcal{L}_{MMD} : Maximum mean discrepancy

$$= \sum_{i=1}^{d} \left| \frac{1}{N_T} \sum_{i_T=1}^{N_T} h\left(x_{i_T}^i(t=1) \right) - \frac{1}{N_C} \sum_{i=1}^{N_C} h\left(x_{i_C}^i(t=0) \right) \right|$$

References

- Johansson, F., Shalit, U., & Sontag, D. (2016, June). Learning representations for counterfactual inference. In *International conference on machine learning* (pp. 3020-3029). PMLR.
- Shalit, U., Johansson, F. D., & Sontag, D. (2017, July). Estimating individual treatment effect: generalization bounds and algorithms. In *International Conference on Machine Learning* (pp. 3076-3085). PMLR.

Learning to rank for uplift modeling

ECML/PKDD'22 Uplift Modeling Tutorial Wouter Verbeke & Szymon Jaroszewicz

Learning to rank for uplift modeling

- Learning to rank (L2R) techniques:
 - Stem from the information retrieval community,
 - Comprise techniques specifically designed to optimize the quality of predicted rankings directly,
 - Rather than the quality of predicted values that serve to rank instances
- Aim in uplift modeling: ranking!
- L2R for UM:
 - Requires appropriate metric for evaluating quality of ranking (objective)
 - Cfr. Supra: evaluation measures (e.g., CROC measure)

Devriendt et al., 2020, Learning to Rank for uplift modeling, IEEE Transactions on Knowledge and Data Engineering, https://doi.org/10.1109/TKDE.2020.3048510

Evaluating uplift models

ECML/PKDD'22 Uplift Modeling Tutorial Wouter Verbeke & Szymon Jaroszewicz

- **PEHE** = RMSE (root mean squared error)
- Synthetic or semi-synthetic data
 - Research <> Business decision-making (e.g., marketing)

$$\epsilon_{PEHE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} ([Y_1^{(i)} - Y_0^{(i)}] - [\hat{Y}_1^{(i)} - \hat{Y}_0^{(i)}])^2}$$

ITE ITE estimate

- Uplift curve
 - For binary target
 - Evaluation by comparing outcomes for *similar* groups
 - Uplift model allows to score and rank all instances
 - **Uplift-curve:** increase in positive outcome rate
 - E.g., per decile
- Note: observational data ...

• Response rate by decile

■ Treatment Group ■ Control Group

• Uplift by decile

First, we should rank persuadables (ITE = 1) Then, we should rank lost causes and sure things (ITE = 0) Finally, we should have the sleeping dogs (ITE = -1)

Cfr. infra: transformed outcome method

• Uplift by decile ... for a perfect model?

Uplift by decile

Link with ATE?

Evaluation

Cumulative incremental gains or Qini curve (cfr. Gini curve)

X: **Treatment rate (%)** of test sample ranked with model from large to small estimated uplift

- **Qini measure** = Area Under the Uplift Curve (AUUC <> AUC)
- Quantile uplift: how much uplift achieved at specified targeting depth?
 - Similar: top-decile qini

Evaluation: CROC

- Cfr. infra: transformed outcome method
 - Apply to transform evaluation in binary classification evaluation

transformed outcome

- Then, apply, e.g., ROC analysis:
 - \rightarrow Causal ROC curve
 - \rightarrow Area under the CROC curve

(CROC curve) (AUCROC measure)

Verbeke et al., 2022, To do or not to do: Cost-sensitive causal decision-making, European Journal of Operational Research

- Monitoring model performance
- Iterative *learning* and improving or optimizing

Feedback loop allowing iterative development

- Uplift modeling: ranking per CATE to optimize targeting
- How many to target?
 - I.e., where to set the threshold?
- Bringing in costs and benefits to optimize decision-making!
 - Cost of a treatment
 - May depend on the outcome
 - E.g., discount in case of a positive outcome only
 - Benefit of **causing** a positive outcome
 - Cost of **causing** a negative outcome

!		Buy after campaign		
		No	Yes	
Buy without campaign	No	Lost causes	Persuadables	
	Yes	Sleeping dogs	Sure things	

Maximum Profit measure

Confusion matrix	Predicted Negative	Predicted Positive		Cost-benefit matrix	Predicted Negative	Predicted Positive
Actual Negative	$F_0(\boldsymbol{T})\pi_0 N$	$(1-F_0(\boldsymbol{T}))\pi_0 N$	ο	Actual Negative	b_0	<i>C</i> ₀
Actual Positive	$F_1(T)\pi_1N$	$(1-F_1(\boldsymbol{T}))\pi_1 N$		Actual Positive	<i>c</i> ₁	b_1

• Average Profit (*P*) per instance:

 $P(\mathbf{T}; b_0, c_0, b_1, c_1) = b_0 F_0(\mathbf{T})\pi_0 + b_1 F_1(\mathbf{T})\pi_1 - c_0(1 - F_0(\mathbf{T}))\pi_0 - c_1(1 - F_1(\mathbf{T}))\pi_1$

$$P = P(T) = \sum \sum (C \circ CB)$$

• **Maximum Profit** (*MP*) measure:

$$MP = \max_{\forall T} P(T; b_0, c_0, b_1, c_1) = P(T^*; b_0, c_0, b_1, c_1)$$

- with T^* the optimal threshold under the given cost-benefit distribution:

 $T^* = \arg \max_{\forall T} P(T; b_0, c_0, b_1, c_1)$

(with • the Hadamard product)

Link with ATE?

Evaluation

Cumulative incremental gains or Qini curve (cfr. Gini curve)

X: **Treatment rate (%)** of test sample ranked with model from large to small estimated uplift

Treatment - Ou	utcome matrix	W = 0	W = 1	
Control group	Outcome Negative	$F_0^c(T)\pi_0$	$(1-F_0^c(T))\pi_0$	
control group	Outcome Positive	$F_1^c(T)\pi_1$	$(1-F_1^c(T))\pi_1$	
Treatment group	Outcome Negative	$F_0^T(T)\pi_0$	$(1-F_0^T(T))\pi_0$	
incatinent group	Outcome Positive	$F_1^T(T)\pi_1$	$(1-F_1^T(T))\pi_1$	

Treatment - outcome matrix (TO):

Simulated outcome distributions for some threshold τ

Net - effect matrix (NE):

Change in outcome distributions compared to **baseline treatment W=0**

Cost (C) and Benefit (B) matrices: Costs & benefits depend on treatments & outcomes

Average Profit (*P*) per instance:

Maximum Profit Uplift (*MPU*) measure:

$$MPU = \max_{\forall T} P(T)$$

• with T^* the optimal threshold under the given cost-benefit distribution: $T^* = \arg \max_{\forall T} P(T; b_0, c_0, b_{\oplus}, c_1)$

Treatment - outcome matrix	W = 0	W = 1
Outcome Y = 0	$\pi_0^c F_0^c(\tau)$	$\pi_0^T(1-F_0^T(\tau))$
Outcome Y = 1	$\pi_1^c F_1^c(\tau)$	$\pi_1^T(1-F_1^T(\tau))$

W = 0

0

0

Net - effect matrix

Outcome Y = 0

Outcome Y = T

Observed in control group Observed in treatment group

				1 1 1 1	
Cost matrix	W = 0	W = 1	Benefit matrix	W = 0	W = 1
Outcome Y = 0	C _(0,0)	$C_{(1,0)}$	Outcome Y = 0	<i>b</i> _(0,0)	<i>b</i> _(1,0)
Outcome Y = 1	C _(1,0)	<i>c</i> _(1,1)	Outcome Y = 1	<i>b</i> _(1,0)	<i>b</i> _(1,1)

W = 1

 $\pi_0^T \left(1 - F_0^T(\tau) \right) - \pi_0^c (1 - F_0^C(\tau))$

 $\pi_1^T \left(1 - F_1^T(\tau) \right) - \pi_1^c (1 - F_1^C(\tau))$

$$P(T) = \sum \sum (NE \circ B - TO \circ C)$$

(with • the Hadamard product)

References

- Devriendt et al., 2020, Learning 2 Rank for uplift modeling, IEEE Transactions on Knowledge and Data Engineering, <u>https://doi.org/10.1109/TKDE.2020.3048510</u>
- Verbeke et al., 2021, The foundations of cost-sensitive causal classification, ArXiv
- Verbeke et al., 2022, To do or not to do: Cost-sensitive causal decision-making, European Journal of Operational Research, <u>https://doi.org/10.1016/j.ejor.2022.03.049</u>

Research agenda

ECML/PKDD'22 Uplift Modeling Tutorial Wouter Verbeke & Szymon Jaroszewicz

- Continuous treatments?
 - Discount, price, production parameters, ...
 - Treatment dummy approach
- Multiple treatments?
 - Also for continuous treatments with binning
 - E.g.: discount, price, ...
 - T-Learner or multi-model approach: one model per treatment vs. control
 - S-Learner or treatment dummy approach: multiple treatment dummies

• Continuous outcome?

- Revenue, yield, quality, time-until-churn/failure/...
- Two-model approach
- Treatment dummy approach
- Multiclass outcome?
 - Also for continuous outcomes with binning
 - Multi-model approach
 - Treatment dummies approach
 - Multi-task learning approach

With observational data?

Inverse propensity score weighting?

- High-dimensional treatments:
 - E.g., organITE
- Interpretability or explainability?
- Taking into account cost of treatment and benefit of outcome
 - Objective: maximize profits
 - E.g., customer retention:
 - To retain as much customers as possible?
 - To retain as much value as possible!

Cost-sensitive learning Profit-driven analytics

- Time-dependent treatments and outcomes?
 - Survival analysis: personalized medicine
 - Forecasting: demand steering
- Concept drift?
 - How much data needed for (re-)training?
 - 'Representative' sample?
 - Still use for 'old' data?
 - E.g., change in retention offer, market conditions, ...

Bandits Reinforcement learning

ECML/PKDD'22 Uplift Modeling Tutorial Wouter Verbeke & Szymon Jaroszewicz

Case: Machine maintenance

- Predictive maintenance vs. prescriptive maintenance
- Take into account costs and benefits?
- Note: close link with optimization

Case: Waste oven process

• Process instances are variable

- Double binary causal classification?
- RCT data?

Case: Pricing – ITE model for customer price elasticity?

- Pricing grid segmentation based on:
 - Demand characteristics (when, #, ...)
 - Customer characteristics?
- Note:
 - Infeasible to price at the individual level?
 - ITE estimates still allow to optimize segmentation
 - Fences
 - Close link with optimization

- Double binary causal classification?
- RCT data?
- Ethical concerns?

Case: Credit risk management

- Active credit risk management: measures to prevent default?
 - E.g.: Practice of active credit risk management in economic downturn periods
- Minimizing losses due to default: recovery process optimization

- Double binary causal classification?
- RCT data?

Case: Human resources management

- Effect of benefits, policies, ... with respect to turnover, illness, ...
- E.g.: Compensation and benefits
 - Modeling compensation and benefit impact on employee retention, satisfaction and performance?
 - Note: 'slow' vs. immediate effects (e.g., in marketing)
 - See also health: effect of exposure to ...

- Double binary causal classification?
- RCT data?

Case: Learning analytics <u>https://www.sciencedirect.com/science/article/pii/S0167923620300750</u>

Case: Health: personalized medicine – Van der Schaar lab @Cambridge <u>https://www.youtube.com/watch?v=YQ8HX4T5OuE</u>

Case: Fraud risk management?

• Preventive fraud measures?