# Uplifting Bandits

Yu-Guan Hsieh, Shiva Kasiviswanathan, Branislav Kveton

ECML/PKDD'22 Uplift Modeling Workshop

September 19th, 2022





#### Multi-Armed Bandits

- Learner repeatedly takes actions (pulls arms)
- · Learner receives rewards from the chosen actions
- The goal is to maximize the cumulative rewards



### Uplift Modeling versus Multi-Armed Bandits

|            | Uplift Modeling                               | Multi-Armed Bandits                                         |  |
|------------|-----------------------------------------------|-------------------------------------------------------------|--|
| Setup      | Offline                                       | Online                                                      |  |
| Challenges | Confounding bias<br>Model evaluation          | Exploration-exploitation trade-off<br>Uncertainty estimates |  |
| Advantage  | Statistical power Data efficiency             |                                                             |  |
| Objective  | Profit maximization / Finding good treatments |                                                             |  |

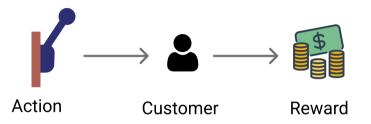
### Uplift Modeling versus Multi-Armed Bandits

|            | Uplift Modeling                               | Multi-Armed Bandits                                         |  |
|------------|-----------------------------------------------|-------------------------------------------------------------|--|
| Setup      | Offline                                       | Online                                                      |  |
| Challenges | Confounding bias<br>Model evaluation          | Exploration-exploitation trade-off<br>Uncertainty estimates |  |
| Advantage  | Statistical power                             | Data efficiency                                             |  |
| Objective  | Profit maximization / Finding good treatments |                                                             |  |

# Applications

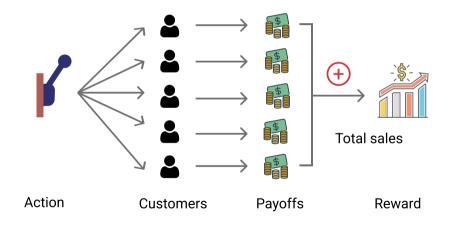
• Marketing, Online advertisement, Movie Recommendation, Clinical Trials, Portfolio Selections . . .



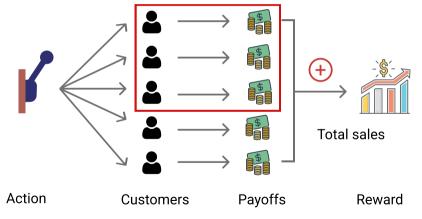


Incorporating uplift: use uplift as reward

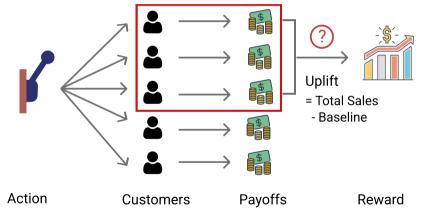
- Take costs of actions into account
- Simply subtracting a baseline can lead to better performance in practice because the model is never perfect



#### Targeted / Influenced

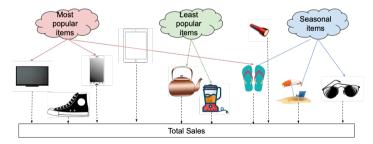


#### Targeted / Influenced



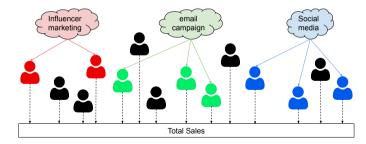
#### Motivating Example in Product Discount

- Consider different discount groups: most popular, least popular, seasonal
- Different groups contain different products
- The reward is summed over all the products
- We observe how much sales each product brings



#### Motivating Example in Online Marketing

- Marketing strategies: email campaign, influencer marketing, social media
- Different customers are sensitive to different strategies
- The reward is summed over all the customers
- We observe how much each customer spends



#### Formulation

#### **Stochastic Bandits**

- *K* actions:  $A = \{1, ..., K\}$
- T rounds:  $[T] = \{1, ..., T\}$
- When action  $a_t$  is taken, the reward  $r_t$  is drawn from  $\mathcal{D}^a$  (distribution over  $\mathbb{R}$ )

#### **Uplifting Bandits**

- K actions, T rounds
- m variables,  $\mathcal{V} = \{1, ..., m\}$
- When action  $a_t$  is taken, the payoffs of the variables  $y_t = (y_t(i))_{i \in \mathcal{V}}$  are drawn from  $\mathcal{P}^{a_t}$  (distribution over  $\mathbb{R}^m$ ), and the reward is  $r_t = \sum_{i \in \mathcal{V}} y_t(i)$

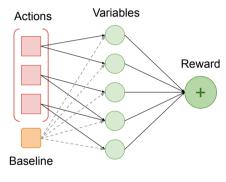
#### Key Assumptions

#### • Limited Number of Affected Variables.

- $\mathcal{P}^0$ : Baseline distribution
- $\mathcal{V}^a$ : variables affected by action a;  $\mathcal{P}^a$  and  $\mathcal{P}^0$  coincide on  $\overline{\mathcal{V}^a} \coloneqq \mathcal{V} \setminus \mathcal{V}^a$
- $L^a = \operatorname{card}(\mathcal{V}^a)$ : number of variables affected by action a
- L: upper bound on number of affected variables, i.e.,  $L \ge \max_{a \in A} L^a$
- Observability of Individual Payoff. All of  $(y_t(i))_{i \in \mathcal{V}}$  is observed
- Assumptions on payoff noise. 1-sub-Gaussian

X is  $\sigma$ -sub-Gaussian if  $\mathbb{E}[\exp(\gamma X)] \leq \exp(\sigma^2 \gamma^2/2), \forall \gamma$ 

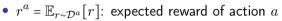
# An Example



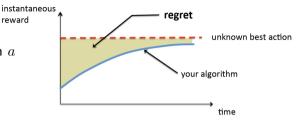
$$K = 3, m = 5, L^a \equiv 2$$

|          | baseline | $arm\ 1$ | $arm\ 2$ | $\operatorname{arm} 3$ |
|----------|----------|----------|----------|------------------------|
| var. $1$ | 0.3      | 0.4      | 0.3      | 0.3                    |
| var. $2$ | 0.5      | 0.7      | 0.5      | 0.5                    |
| var. 3   | 0        | 0        | 0.2      | 0                      |
| var. $4$ | 0.9      | 0.9      | 0.7      | 1                      |
| var. $5$ | 0.5      | 0.5      | 0.5      | 0.3                    |
| reward   | 2.2      | 2.5      | 2.2      | 2.1                    |
| uplift   | -        | 0.3      | 0        | -0.1                   |

Regret



- Optimal action is  $a^* \in \arg \max r^a$  $a \in A$
- Optimal reward is  $r^{\star} = r^{a^{\star}} = \max r^{a}$  $a \in A$



Regret compares the expected performance between the learner and the optimal action

reward

$$\operatorname{Reg}_{T} = r^{\star}T - \sum_{t=1}^{T} r^{a_{t}} = \sum_{a \in \mathcal{A}} \underbrace{\sum_{t=1}^{T} \mathbb{1}\{a_{t} = a\}}_{N_{T}^{a}} \underbrace{(r^{\star} - r^{a})}_{\Delta^{a}},$$

•  $\Delta^a$  is the suboptimality gap of a,  $\Delta$  is minimum non-zero suboptimality gap

#### Plan

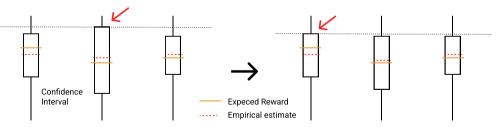
#### 1 From Multi-Armed Bandits to Uplifting Bandits

#### 2 Algorithms

**3** Experiments and Discussion

#### UCB- Optimism in Face of Uncertainty

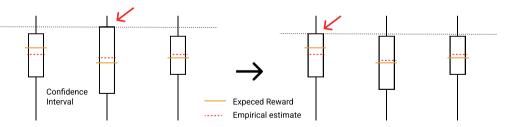
- Empirical estimate of reward:  $\hat{r}_t^a = \sum_{s=1}^t r_s \mathbb{1}\{a_s = a\} / \max(1, N_t^a)$
- Width of confidence interval:  $c_t^a = \sigma \sqrt{2 \log(1/\delta')/N_t^a}$ , where  $\sigma$  is the scale of noise
- Take action with the highest upper confidence bound (UCB):  $U_t^a = \hat{r}_t^a + c_t^a$



|     | <u>~</u> |       |
|-----|----------|-------|
| YU- | Guan     | Hsieh |
|     |          |       |

#### UCB– Why does it Work?

- Choose the seemly best arm for exploitation
- Add the confidence interval  $c_t^a$  for exploration: the fewer number of times an arm is pulled, the higher its UCB index
- With enough data, bad arms get pulled less and less frequently



# UCB for Uplifting Bandits

The number of time a suboptimal action is taken scales with the noise in its reward

- The reward is  $r_t = \sum_{i \in \mathcal{V}} y_t(i)$
- Each  $y_t(i)$  is 1-sub-Gaussian (assumption)
- Therefore  $r_t$  is *m*-sub-Gaussian (we do not assume independence)
- The regret is in  $\mathcal{O}(Km^2 \log T/\Delta) \longrightarrow$  substantial when m is large

### Fixing UCB: Looking at Uplift

- For  $a \in \mathcal{A}_0 \coloneqq \mathcal{A} \cup \{0\}$ , let  $y^a = (y^a(i))_{i \in \mathcal{V}}$  follow distribution  $\mathcal{P}^a$
- Define expected payoffs  $\mu^a(i) = \mathbb{E}[y^a(i)]$ ; Baseline payoff vector is  $\mu^0 = (\mu^0(i))_{i \in \mathcal{V}}$
- Individual uplift:  $\mu^a_{up}(i) = \mu^a(i) \mu^0(i)$
- The (total) uplift of an action is

$$r_{up}^{a} = \sum_{i \in \mathcal{V}^{a}} \mu_{up}^{a}(i) = \sum_{i \in \mathcal{V}^{a}} (\mu^{a}(i) - \mu^{0}(i)) = \sum_{i \in \mathcal{V}} \mu_{up}^{a}(i) = r^{a} - r^{0}.$$

$$r^0$$
 =  $\sum_{i \in \mathcal{V}} \mu^0(i)$  is the reward of the baseline

• We can rewrite  $\operatorname{Reg}_T = r_{up}^* T - \sum_{t=1}^T r_{up}^{a_t}$ ,  $\Delta^a = r_{up}^* - r_{up}^a$ , where  $r_{up}^* = r_{up}^{a^*} = \max_{a \in \mathcal{A}} r_{up}^a$ 

# UpUCB (b)– UCB for Estimating the Uplifts

The learner knows

- **1** Baseline payoffs  $\mu^0 = (\mu^0(i))_{i \in \mathcal{V}}$
- **2** The sets of affected variables  $(\mathcal{V}^a)_{a \in \mathcal{A}}$
- UCB applied to transformed rewards  $r'_t = \sum_{i \in \mathcal{V}_{a_t}} (y_t(i) \mu^0(i))$ 
  - $r_t^\prime$  can be computed thanks to the learner's prior knowledge
- $\mathbb{E}[r_t'] = r_{up}^{a_t}$ , and thus the regret is not modified

• 
$$r'_t = \sum_{i \in \mathcal{V}_{a_t}} (y_t(i) - \mu^0(i))$$
 is  $L^{a_t}$ -sub-Gaussian ; Regret in  $\mathcal{O}(KL^2 \log T/\Delta)$ 

# UpUCB (b)– UCB for Estimating the Uplifts

The learner knows

1 Baseline payoffs  $\mu^0 = (\mu^0(i))_{i \in \mathcal{V}}$ 2 The sets of affected variables  $(\mathcal{V}^a)_{a \in \mathcal{A}}$  and always realistic

• UCB applied to transformed rewards  $r'_t = \sum (y_t(i) - \mu^0(i))$ 

 $r'_t$  can be computed thanks to the learner's prior knowledge

•  $\mathbb{E}[r'_t] = r^{a_t}_{up}$ , and thus the regret is not modified

• 
$$r'_t = \sum_{i \in \mathcal{V}_{a_t}} (y_t(i) - \mu^0(i))$$
 is  $L^{a_t}$ -sub-Gaussian ; Regret in  $\mathcal{O}(KL^2 \log T/\Delta)$ 

### Overview of Our Results

| Algorithm                | UCB                   | UpUCB (b)           | UpUCB | UpUCB-nAff            | UpUCB-iLift                                                        |
|--------------------------|-----------------------|---------------------|-------|-----------------------|--------------------------------------------------------------------|
| Affected variables known | No                    | Yes                 | Yes   | No                    | No                                                                 |
| Baseline payoffs known   | No                    | Yes                 | No    | No                    | No                                                                 |
| Regret Bound             | $\frac{Km^2}{\Delta}$ | $\frac{KL}{\Delta}$ | 2     | $\frac{KL^2}{\Delta}$ | $\frac{K \operatorname{clip}(\Delta/\Delta_{up}, L, m)^2}{\Delta}$ |

Key takeaway: focusing on the uplift gives much smaller regret

- *K*: number of actions *m*: number of variables
- *L*: upper bound on number of affected variables
- $\Delta$ : minimum non-zero suboptimality gap  $\Delta_{up}$ : a lower bound on individual uplift

#### Lower Bounds- Justifying the Assumptions

Let  $\pi$  be a *consistent* algorithm the is provided the knowledge about  $\mathcal{P}^0$  and  $(\mathcal{V}^a)_{a \in \mathcal{A}}$ . If any of the follow holds

- 1 All actions affect all variables
- 2 Only the reward is observed (but not individual payoffs of the variables)
- **3**  $\pi$  does not use any information about  $(\mathcal{V}^a)_{a\in\mathcal{A}}$

Then the regret of  $\pi$  is  $\Omega(Km^2 \log T/\Delta)$ 

#### UpUCB- When Baseline is Unknown

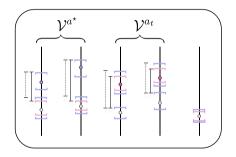
• Estimate the baseline from the rounds that i is not affected (i.e.,  $i \notin \mathcal{V}^a$ )

$$N_t^0(i) = \sum_{s=1}^t \mathbb{1}\{i \notin \mathcal{V}^{a_s}\}, \quad c_t^0(i) = \sqrt{\frac{2\log(1/\delta')}{N_t^0(i)}}, \quad \hat{\mu}_t^0(i) = \frac{\sum_{s=1}^t y_s(i) \mathbb{1}\{i \notin \mathcal{V}^{a_s}\}}{\max(1, N_t^0(i))}.$$

- Define UCB indices  $U_t^a = \hat{\mu}_{t-1}^a + c_{t-1}^a$  and  $U_t^0(i) = \hat{\mu}_{t-1}^0(i) + c_{t-1}^0(i)$
- Pull arm with highest uplifting index  $\tau_t^a = \sum_{i \in \mathcal{V}^a} (U_t^a(i) U_t^0(i))$  [not optimistic]

#### UpUCB- Why does it work?

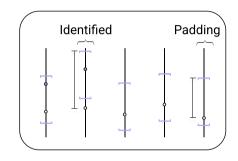
- When action a is taken, we learn about the baseline payoffs of  $i \notin \mathcal{V}^a$
- An arm that has not been pulled many times has large  $U_t^a(i)$  and small  $U_t^0(i)$  for  $i \in \mathcal{V}^a$  $\rightarrow$  implying large uplifting index  $\tau_t^a$
- If suboptimal a action is taken
  - $au_t^a$  decreases, since all  $U_t^a(i)$  for  $i \in \mathcal{V}^a$  do
  - $\tau_t^{a^*}$  increases, since  $U_t^0(i)$  decrease for any *i* affected by  $a^*$  but not *a*



#### UpUCB-nAff (b)– Known Baseline and Known L

- L upper bound on number of affected variables
- Construct  $au_t^a$  =  $\sum_{i\in \widehat{\mathcal{V}}_t^a\cup \mathcal{L}_t^a}
  ho_t^a(i)$  in two steps
  - 1 Identification of affected
    - $\widehat{\mathcal{V}}_t^a$  =  $\{i \in \mathcal{V} : \mu^0(i) \notin \mathcal{C}_t^a(i)\}$
  - **2** Optimistic padding  $[\rho_t^a(i) = \hat{\mu}_{t-1}^a(i) + c_{t-1}^a - \mu^0(i))]$

$$\mathcal{L}_{t}^{a} = \underset{\substack{\mathcal{L} \subseteq \mathcal{V} \setminus \widehat{\mathcal{V}}_{t}^{a} \\ \text{card}(\mathcal{L}) = L_{t}^{a}}{\operatorname{arg\,max}} \sum_{i \in \mathcal{L}} \rho_{t}^{a}(i) \text{ where } L_{t}^{a} = \max(0, L - \operatorname{card}(\widehat{\mathcal{V}}_{t}^{a}))$$



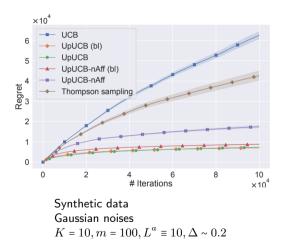
#### Plan

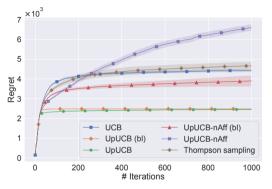
#### 1 From Multi-Armed Bandits to Uplifting Bandits

#### 2 Algorithms

**3** Experiments and Discussion

#### Experiments





Constructed with Criteo Uplift Modeling Dataset Bernoulli noises, independent across variables  $K = 20, m = 10^5, L = 12654, \Delta \sim 30$ 

UCB and Thomposon sampling with Gaussian Prior only use the rewards

Yu-Guan Hsieh

**Uplifting Bandits** 

#### Conclusion

- Introduce uplifting bandits to formally capture the benefit of estimating uplift in the bandit setup
- Provide optimal regrets bounds using variants of UCB
- Contextual extension are also discussed in our work: Associate each variable with a feature vector  $x_t(i) \in \mathbb{R}$

### Perspectives- Uplift modeling and causal inference

- From an uplift viewpoint: Can we make use of more complex uplift modeling approach in the procedure? (Need for accounting the uncertainty)
- From a causal viewpoint: Can the method be generalized? View abstractly, the reward is generated from an underlying causal mechanism and each action only affects a small number of the involving variables.
- Use of (confounded) offline data for warm-up

#### Perspectives- Multi-armed bandits

- Misspecified model: Small impact on  $\overline{\mathcal{V}^a}$
- · Contexts, possibility of taking multiple actions in one round
- Use of other algorithms: Thompson sampling, information directed sampling
- Dealing with non-stationarity and the adversarial setup

#### Perspectives- Multi-armed bandits

- Misspecified model: Small impact on  $\overline{\mathcal{V}^a}$
- · Contexts, possibility of taking multiple actions in one round
- Use of other algorithms: Thompson sampling, information directed sampling
- Dealing with non-stationarity and the adversarial setup
- H., Kasiviswanathan, S. P., & Kveton, B. (2022). Uplifting Bandits. Accepted at NeurIPS 2022.

# Thank you for your attention

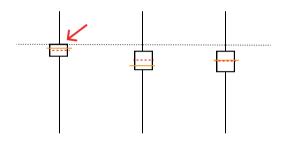
# Analyses

#### UCB Analysis in a Nutshell

- Assume all expected rewards lie in their confidence intervals
- Then a suboptimal action is not taken anymore if  $2c^a_t < \Delta^a$

• This shows 
$$N_T^a \leq \frac{8\sigma^2 \log(1/\delta')}{(\Delta^a)^2} + 1$$

• Conclude with 
$$\operatorname{Reg}_T = \sum_{a \in \mathcal{A}} N_t^a \Delta^a$$



The number of time a suboptimal action is taken scales with the noise in its reward

#### UpUCB- Regret

• The regret is in  $\mathcal{O}(KL^2 \log T/\Delta)$  because

Only O(L) variables are involved in the estimates
 The confidence intervals of the baseline payoffs are small

• If action a is taken at round t then

$$\sum_{i \in \mathcal{V}^a} U_t^a(i) + \sum_{i \in \mathcal{V}^a^* \smallsetminus \mathcal{V}^a} U_t^0(i) \ge \sum_{i \in \mathcal{V}^{a^*}} U_t^{a^*}(i) + \sum_{i \in \mathcal{V}^a \smallsetminus \mathcal{V}^{a^*}} U_t^0(i).$$

similar structure as UCB

# UpUCB-nAff (b)- Regret

The regret is in  $O(KL^2 \log T/\Delta)$  because

**1** Only  $\mathcal{O}(L)$  variables are involved in the estimates

2 If a variable is identified, it's like in UpUCB (b)

**3** If a variable is not identified,  $\hat{\mu}_{t-1}^{a}(i)$  and  $\mu^{0}(i)$  are close, so  $\rho_{t}^{a}(i)$  is small

Indeed, if  $\widehat{\mathcal{V}}_t^a \subseteq \mathcal{V}^a$ , then

$$\tau_t^a = \sum_{i \in \widehat{\mathcal{V}}_t^a} \rho_t^a(i) + \sum_{i \in \mathcal{L}_t^a} \rho_t^a(i) = \underbrace{\sum_{i \in \mathcal{V}^a} \rho_t^a(i)}_{\text{UpUCB (b)}} + \underbrace{\sum_{i \in \mathcal{L}_t^a \smallsetminus \mathcal{V}^a} \rho_t^a(i) - \sum_{i \in \mathcal{V}^a \smallsetminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i) - \sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i) - \sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i) - \sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i) - \sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i) - \sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i) - \sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i) - \sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i) - \sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i) - \sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i) - \sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i) - \sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \setminus \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \cap \widehat{\mathcal{V}}_t^a} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \cap \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \cap \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace{\sum_{i \in \mathcal{V}_t^a \cap \widehat{\mathcal{V}}_t^a} \rho_t^a(i)}_{\text{small}} \cdot \underbrace$$

-23 / -16

### UpUCB-nAff- Unknown Baseline and Known L

- Unclear how baseline can be estimated in this case
- Key observation: The payoffs of any action can be a baseline because  $\mu^a$  and  $\mu^{a'}$  only differ on  $\mathcal{V}^a \cup \mathcal{V}^{a'}$ , and  $\operatorname{card}(\mathcal{V}^a \cup \mathcal{V}^{a'}) \leq 2L$
- Take the payoffs of an action as baseline at each round

#### The regret is in $O(KL^2 \log T/\Delta)$ because

- 1 Only  $\mathcal{O}(L)$  variables are involved in the estimates
- 2 The confidence intervals of the chosen action  $b_t$  is small as  $b_t$  is an action that has been taken the most number of times

#### Lower Bound on Individual Uplift

- $\Delta_{up} > 0$  such that for all  $a \in \mathcal{A}$  and  $i \in \mathcal{V}^a$ ,  $|\mu^a(i) \mu^0(i)| \ge \Delta_{up}$
- If we know baseline and  $\Delta_{\rm up},$  we know how many times we need to take an action to find all the affected variables
- By combining UCB with this idea, we get a regret in  $\frac{K \operatorname{clip}(\Delta/\Delta_{up}, L, m)^2}{\Delta}$

# Pseudo Code

# UpUCB (b)– UCB for Estimating the Uplifts

#### Algorithm UpUCB(b)

- 1: Input: Error probability  $\delta'$ , Baseline payoffs  $\mu^0$ , Sets of affected variables  $\{\mathcal{V}^a : a \in \mathcal{A}\}$ 2: Initialization: Take each action once
- 3: for t = K + 1, ..., T do
- 4: for  $a \in \mathcal{A}$  do
- 5: Compute empirical estimate  $\hat{\mu}_t^a(i) = \sum_{s=1}^t y_s(i) \mathbbm{1}\{a_s = a\} / \max(1, N_t^a)$
- 6: Compute widths of confidence interval  $c_t^a = \sqrt{2 \log(1/\delta')/N_t^a}$
- 7: Compute uplifting index  $\tau_t^a \leftarrow \sum_{i \in \mathcal{V}^a} (\hat{\mu}_{t-1}^a(i) + c_{t-1}^a \mu^0(i))$
- 8: Select action  $a_t \in \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} \tau_t^a$

### UpUCB- When Baseline is Unknown

#### Algorithm UpUCB

- 1: Input: Error probability  $\delta'$ , the sets of variables each action affects  $\{\mathcal{V}^a : a \in \mathcal{A}\}$
- 2: Initialization: Take each action once
- 3: for  $t = K + 1, \ldots, T$  do
- 4: Compute the UCB indices

5: For 
$$a \in \mathcal{A}$$
, set  $\tau_t^a \leftarrow \sum_{i \in \mathcal{V}^a} (U_t^a(i) - U_t^0(i))$ 

6: Select action  $a_t \in \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} \tau_t^a$ 

### UpUCB-nAff

**Algorithm** UpUCB-nAff (Input:  $\delta'$  and L; Initialization: take each action once)

- 1: for t = K + 1, ..., T do
- 2: Choose  $b_t \in \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} N_{t-1}^a$
- 3: Compute UCBs and confidence intervals

4: for 
$$a \in \mathcal{A}$$
 do  
5: Set  $\widehat{\mathcal{V}}_{t}^{a} \leftarrow \{i \in \mathcal{V} : \mathcal{C}_{t}^{a}(i) \cap \mathcal{C}_{t}^{b_{t}}(i) = \emptyset\}$   
6: For  $i \in \mathcal{V}$ , compute  $\rho_{t}^{a}(i) \leftarrow U_{t}^{a}(i) - U_{t}^{b_{t}}(i)$   
7: Set  $\mathcal{L}_{t}^{a} \leftarrow \underset{\substack{\mathcal{L} \subseteq \mathcal{V} \setminus \widehat{\mathcal{V}}_{t}^{a} \\ \operatorname{card}(\mathcal{L}) \leq L_{t}^{a}}}{\sum} \rho_{t}^{a}(i)$ , where  $L_{t}^{a} \leftarrow \max(0, 2L - \operatorname{card}(\widehat{\mathcal{V}}_{t}^{a}))$   
8: Compute uplifting index  $\tau_{t}^{a} \leftarrow \sum_{i \in \widehat{\mathcal{V}}_{t}^{a} \cup \mathcal{L}_{t}^{a}} \rho_{t}^{a}(i)$ 

9: Select action  $a_t \in \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} \tau_t^a$